

Maximum accuracy of ±0.16% achieved with current sensors!

- Measure the primary and secondary sides of inverters
- □ Advanced motor analysis functions
- ☐ Measure inverter noise

V

A

kW

Large Assortment of Wide-band, High-Precision Feed-Through Current Sensors

Current Sensor Method

Surpasses the Accuracy of Direct Connection Method

Power Analyzer 3390

When combined with the feed-through current sensors

Maximum accuracy of $\pm 0.16\%$

Fac Owner's Consequence in facilities and a second fac

For Current Sensor specifications, please go to

page 15

Power Analyzing Control Engine Technology processes

Measurement data at high speeds and with excellent accuracy

Weight & Volume

1/3

A HIOKI proprietary engine that takes advantage of the latest semi-conductor technologies enables a much smaller footprint than ever before (in comparison with other HIOKI high performance power meters) Feed-through current sensors

Clamp-on sensors

9709

CT6862

CT6841

9272-10

Current sensor design allows for safe and efficient testing

- Choice of sensors include easy-to-measure AC and AC/DC clamp-on sensors and feed-through current sensors for highaccuracy measurements
- Immune to in-phase noise effects when measuring inverters

Basic accuracy of Model 3390: ±0.1%

Basic measurement range: DC, 0.5 Hz to 5 kHz

(Frequency bandwidth: DC, 0.5 Hz to 150 kHz)

Effective input range: 1% to 110%

- High accuracy, wide band, and wide dynamic range
- Also measure the secondary side of DC inverters in conjunction with a variety of HIOKI current sensors

All data updated at 50ms*

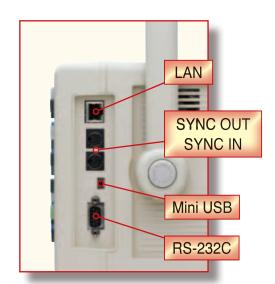
- 50ms data refresh rate for all measurements unaffected by settings restraints
- Synchronize the measurements of multiple 3390s
 Automatic update rate eliminates the need of switching for low-frequency measurements
- * 50ms data refresh rate does not apply to waveform and noise analysis

www.valuetronics.com

Meet the Needs of Alternative Energy and Inverter or Motor Evaluations

4-channel isolated input

Measure the primary and secondary sides of inverters simultaneously


- Choose wiring from single-phase two-wire to three-phase four-wire
- Synchronize the measurements of multiple 3390s

• Use of the **MOTOR TESTING OPTION 9791 (or 9793)** allows torque meter output and rotation input, and facilitates motor power measurement

For motor evaluation and analysis specifications, please go to pages 8 & 9

A Variety of Interfaces Standardly Equipped Includes 100Mbps Ethernet and USB 2.0 High Speed communications interfaces.

- Connect up to four **3390**s and synchronize their clocks and measurement timing for multiple-channel measurements (using the SYNC terminal and Connection Cable **9683**)
- Use dedicated application software to conduct synchronized operations for up to 4 units and obtain all the measurement data

CF card interface

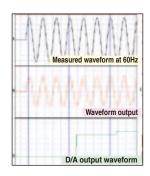
& USB memory interface

Automatically save interval measurement data to a CF card (When saving manually, measured data and waveform data can be saved directly to the CF card

and USB memory)

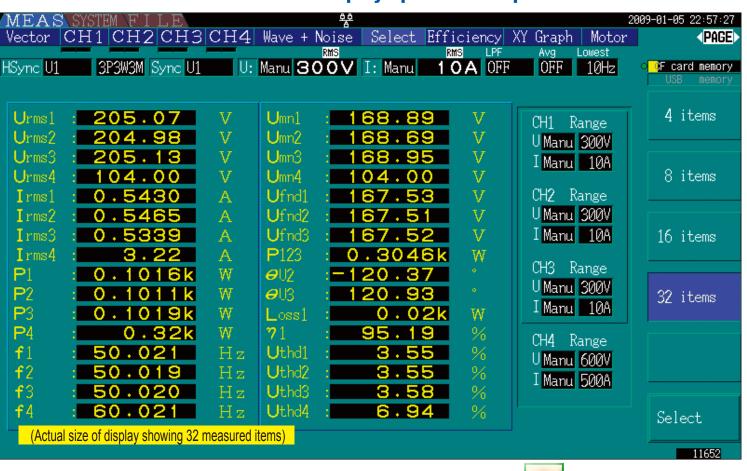
HTTP server function available with free dedicated PC software

- HTTP server function through web browser enables easy remote operation
- Free dedicated PC application can be downloaded from the HIOKI website


Collect data and operate the **3390** remotely by connecting it to a PC via LAN or USB

Waveform Output and 16 Channel D/A output

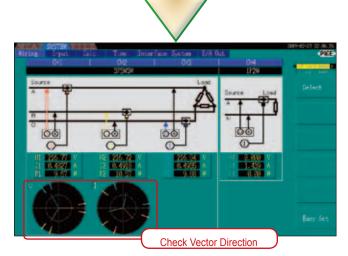
- Use the **D/A OUTPUT OPTION 9792** to update data every 50ms and output up to 16 items in analog format
- Also output the voltage and current waveforms for each channel (using 1 to 8 channels)
 (Waveforms are output at 500 kS/s and sinusoidal waveforms can be represented accurately at up to 20 kHz)



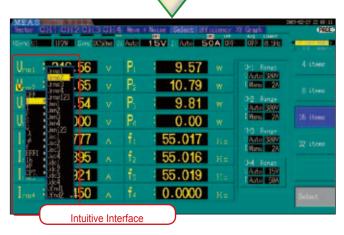
Extra-Large Screen Expands Possibilities

Capture measured data and waveforms at a glance utilizing a variety of display options

The 9" color LCD can display up to 32 data parameters



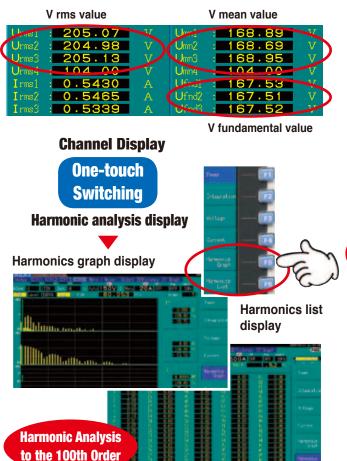
Wiring check function prevents connection errors

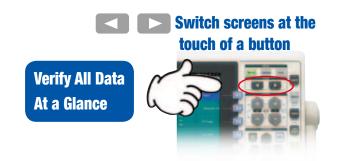

Display connection and vector diagrams on the Wiring screen

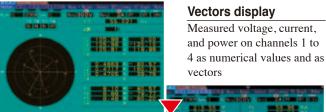
Improve efficiency and reliability while saving time in wiring even for three-phase measurements

Display just the required data in an easy-to-read graphic interface on the Select screen Screen_displaying_32,_16_8, or_4_items

Display items can be set individually for each selected screen Read data quickly and easily by just switching between the screens



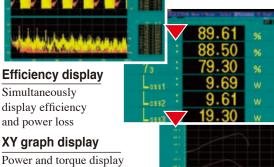

All data is processed in parallel simultaneously.


A wealth of data analysis functions all built-in and ready to use.

Channel display

RMS and MEAN values, and AC, DC, and fundamental waveform components can be measured and displayed simultaneously

Channel display


Measured power, voltage and current values, integration values, with access to harmonic graphs and lists for each channel.

Wave+Noise display

Ideal for frequency analysis of inverter noise (FFT nalysis)

Efficiency display

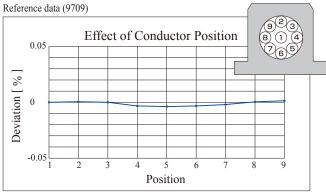
Simultaneously display efficiency and power loss

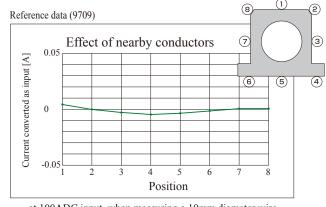
XY graph display

makes it easy to understand the motor I/O characteristics

Feed-through Current Sensor Enable Extremely Accurate Measurements

HIOKI's high-performance feed-through current sensors absolutely minimizes the effects of conductor position and external fields, making them exceptionally precise. Repeatability and stability are absolutely unmatched!



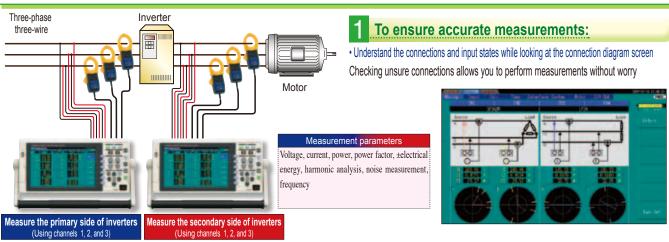


Feed-through current sensors meet a large variety of applications from electric or hybrid vehicle testing, inverter motor evaluations and solar power devices and fuel cell analysis to individual testing of electrical appliances and facilities equipment.

*For further information and specifications, please refer to page 15.

at 100ADC input, when measuring a 10mm diameter wire

Measure the primary and secondary sides of inverters (Performance evaluation of motors and inverters)

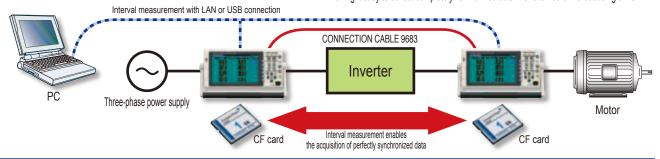

Accurately and easily measure the power of inverters and motors for a wide range of applications, from research and development to field tests

Advantages

- 1. Isolated input of voltage and current lets you measure the power on the primary and secondary sides of inverters simultaneously.
- 2. Using a non-invasive current sensor makes the connection simple and easy. A vector diagram display ensures connections are checked.

Proprietary HIOKI Technology

- 3. Accurately measure the fundamental wave voltage and current values related to the motor axis output with confidence
- 4. All data is measured simultaneously and updated every 50 ms.
- 5. In addition to the harmonic analysis required to evaluate the inverter control, noise components can also be measured at the same time ideal for determining the leakage of inverter noise
- 6. Use of a current sensor reduces the effect of in-phase noise from inverters when measuring the power


PC measurements and synchronizing multiple devices

 Dedicated application software allows you to perform PC measurements right out of the box

LAN and USB compatibility facilitates efficient data collection and remote operation. Bundled application software allows you to control up to 4 units.

Acquire all data even when multi-unit measurements are performed
 Two units can be connected using the CONNECTION CABLE 9683 (option) to synchronize the internal clocks and control signals.

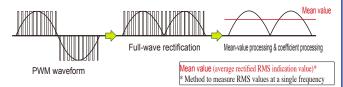
Interval measurements with the two units allow the acquisition of perfectly synchronized data, making it easy to collect completely harmonized data with a CF card without using a PC.

■ What's so special about inverter motors?

Inverter motors are indispensable as the power source of industrial equipment. The rotation of an induction motor depends on the input frequency, so if this input frequency can be made variable, the rotation can be controlled freely. Development of a frequency conversion technology called an inverter has made it possible to freely control the rotation of motors.

In recent years, the mainstream inverter control method is the PWM (Pulse-width Modulation) method.

• What is the PWM method?


A pseudo sinusoidal waveform (fundamental wave) resulting from the conversion of the fundamental wave frequency that determines the rotation of a motor to a pulse train called a carrier frequency (at about several kHz to 15 kHz) is effected, controlling the number of rotations.

Performance evaluation and electrical measurement of motor

The axis output of a motor is closely related to the fundamental wave frequency to be input, so an accurate measurement of this fundamental wave component is required to evaluate the input characteristics.

Conventional measurement method

Traditional methods use the average rectified RMS indication (Mean) in order to obtain a component value close to the fundamental wave frequency from a pseudo sinusoidal waveform (fundamental wave + carrier wave) to be input. To measure an accurate fundamental component, frequency analysis was required; however, the conventional processing method was not practical because it could barely perform real-time measurements with FFT as a result of the limited computing power.

• The 3390 is capable of measuring the fundamental wave component accurately.
The 3390 performs this frequency analysis using high-speed harmonic computation processing at an interval of 50 ms and displays the true fundamental wave component.

3 To make the best of inverter motor measurements:

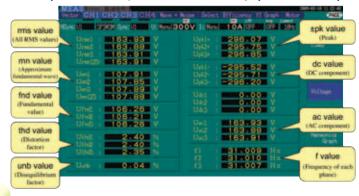
· Parameters critical to the measurement of motor inputs (outputs on the secondary side of inverters) can be measured and displayed simultaneously.

Display item	Measurement details	
rms value	RMS value of fundamental wave + carrier wave components	
mn value	RMS value (mean value) close to the fundamental wave component	
fnd value	True fundamental wave component	
thd value	Displays the distortion factor of measured waveform	
unb value	Displays the balance between phases	
±pk value	Maximum positive/negative values of waveform that is being measured	
dc value	Displays a DC component harmful to the motor	
ac value	RMS value obtained by removing the DC component from the RMS value	
f value	Frequency of each phase	

4 Clearly display efficiency and loss of inverters

· Efficiency and loss measurement function built-in

The operating efficiency and power loss of an inverter can be displayed when measuring the inputs and outputs of the inverter simultaneously.



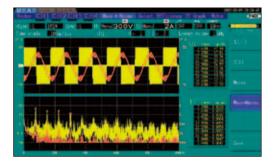
6 Harmonic measurement indispensable for inverter evaluation

 4-channel simultaneous harmonic analysis function built-in (Performed simultaneously with power measurement)

Harmonic analysis is essential for the development and evaluation of inverters Synchronized to the fundamental wave frequency from 0.5 Hz to 5 kHz Harmonic analysis up to the 100th order can be performed simultaneously with power measurement.

5 X-Y graph display lets you check the dynamic characteristics of inverters

• X-Y graph display function built-in (X-axis: 1 item, Y-axis: 2 items)


By simply specifying the voltage for the X-axis and the power consumption and efficiency for the Y-axis, you can display the dynamic characteristics of a motor in real time.

7 Evaluate of the troublesome noise of inverters

• Noise measurement function built-in (1-channel measurement: Performed simultaneously with power measurement and harmonic analysis)

Noise components at up to 100 kHz can be read while looking at the measured waveforms Simultaneously display the top 10 point frequency and voltage/current levels

8 Waveforms can be observed at 500 kS/s, and fundamental waves can also be checked

Waveform monitoring function fully supported

Display the voltage and current waveforms being measured

The carrier frequency components of an inverter are also displayed in real time

Filter function

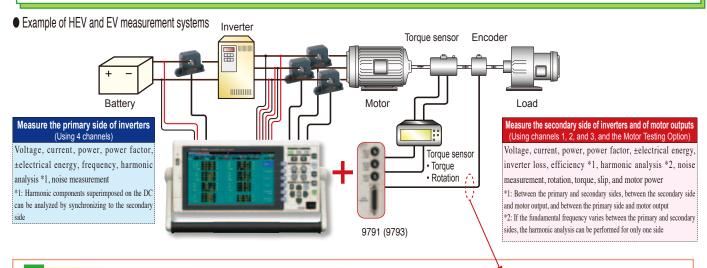
A filter function is used to remove the carrier frequency components from the inverter, and fundamental wave frequency waveforms can be checked in the waveform display.

* The filter function is reflected in the measured values. Please be careful when you switch to the function during measurement.

Waveform monitoring of carrier frequency

When the 500 Hz filter is turned ON

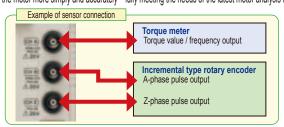
Geared for the latest motor evaluation and analysis of Hybrid Electric Vehicles, Electric Vehicles and the like


Drive the research and development of three-phase inverter motors with high accuracy and high-speed measurements

Advantages

- 1. Use of the MOTOR TESTING OPTION 9791 (9793) lets you perform a total evaluation of inverter motors
- 2. The voltage, torque, rotation, frequency, slip, and motor power required for motor analysis can be measured with one unit
- 3. Current sensors make the connection simple. In addition, use of the AC/DC CURRENT SENSOR enables measurements with superior accuracy

Proprietary HIOKI Technology


- 4. All data is measured simultaneously and updated every 50 ms. Data collection and characteristics tests can be performed at the industry's fastest speed
- 5. Evolution of electrical angle measurements critical to motor analysis has made it possible to perform more accurate measurements using an incremental encoder
- 6. Harmonic analysis at 0.5 Hz to 5 kHz without the need for an external timing mechanism
- 7. Built-in digital anti-aliasing filter (AAF) lets you measure the broadband power on the secondary side of inverters to make accurate harmonic analyses

Evaluate high-performance vector control inverters:

- Measurements of fundamental wave voltage and current and their phases based on an accurate harmonic analysis are indispensable to motor analysis
- Support of an incremental encoder allows detecting synchronization signals from a motor easily and accurately

Electrical angle measurements are indispensable for dynamic characteristics analysis of motors. The 3390 can conduct FFT analyses synchronized to rotation pulses from the tachometer and the motor induced voltage, and the A-phase and Z-phase pulse inputs that allow measuring and detecting the origin of the motor more simply and accurately – fully meeting the needs of the latest motor analysis tests.

Encoder A-phase signal Encoder Z-phase signal Voltage / current waveform

■ Application 1: "Electrical angle measurement"

- \circ The voltage / current fundamental wave component " θ " from the machine angle origin can be calculated by performing harmonic analysis of motor input voltage / current by synchronizing to the A-phase signal and z-phase signal of an encoder.
- A function to perform zero compensation for this phase angle when a motor induced voltage is generated can be used to measure the voltage and current phase (electrical angle) in real time based on the induced voltage when the motor is started.

■ The importance of measuring the electrical angle of synchronous motors

The key to the performance of high-performance low-fuel consumption vehicles represented by HEV and EV is the synchronous motor that is used as the power source. The synchronous motor is finely controlled by alternating signals generated by an inverter device (DC to AC conversion) using the electricity from batteries.

• What is a synchronous motor?

A synchronous motor rotates in synchronization with the AC frequency. Structurally, the motor is turned by the rotating force at the magnetic pole of the rotator (rotator magnetic pole), which is generated by the rotating magnetic field generated by applying an alternating current to the magnetic field (stator magnetic pole). The rotation speed is synchronized to the speed of the rotating magnetic field, so the

speed can be controlled by changing the speed of the rotating magnetic field (power supply frequency). In addition, high operating efficiency is one of the advantages of the synchronous motor.

• Why is electrical angle measurement necessary?

In the case of a synchronous motor, a phase shifting occurs between the stator magnetic pole and the rotator magnetic pole due to a change in the load torque. This shifted angle and the torque force that can be generated by a motor have a close relationship, so it is important to understand this shifted angle (electrical angle) in order to achieve high-efficiency motor control.

• The 3390 provides a more accurate measurement method

The 3390 supports the incremental encoder output in addition to the measurement methods of the HIOKI 3194 Power HiTESTER – enabling you to measure this electrical angle more easily and accurately.

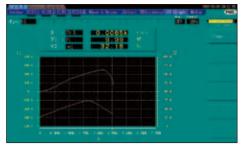
2 Analyze harmonic signals from the low-speed rotation range of motors

• Harmonic analysis from a synchronization frequency of 0.5 Hz Accurate measurements can be performed in the low-speed rotation range of motors without the need of an external clock.

If the synchronization frequency is 45 Hz or more, analysis results are updated every 50 ms, so data analysis can be performed in real time.

Synchronization frequency range	Window wave number	Analysis order
0.5Hz to 40Hz	1	100th order
40Hz to 80Hz	1	100th order
80Hz to 160Hz	2	80th order
160Hz to 320Hz	4	40th order
320Hz to 640Hz	8	20th order
640Hz to 1.2kHz	16	10th order
1.2kHz to 2.5kHz	32	5th order
2.5kHz to 5.0kHz	64	3rd order

3 Vector display of electrical angles of motors


• Display vectors including that of the phase angle and electrical angle ($\varDelta\theta$) of fundamental wave voltage and current. The measured data can be used as parameters to calculate the Ld and Lq values.

5 X-Y graph display lets you check the dynamic characteristics of inverters

• X-Y graph display function built-in (X-axis: 1 item, Y-axis: 2 items)

By simply setting 2 items to the Y-axis as with a 6-axis graph used to evaluate motors, you can display the characteristics of a motor and similar devices in real time.

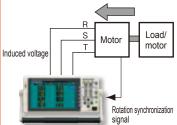
· Analyze up to the 100th order

Synchronized to the fundamental wave frequency of 0.5 Hz to 5 kHz Simultaneously perform analysis up to the 100th order harmonic along with power measurement

4 Clearly view the inverter efficiency/loss and motor power

• Output, efficiency, and loss of inverter motors can be measured with one single unit

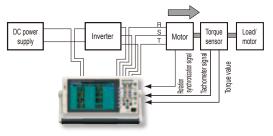
Operating efficiency and power loss of the inverter and motor can be displayed when the inputs and outputs of the inverter are measured simultaneously.



■ Application 2: Electrical angle measurement using induced voltage of motors (The same measurements conducted with the HIOKI 3194 can also be performed)

Correct the rotation synchronization signal and induced voltage phase of motors as well as measure the phase of voltage and current for the induced voltage of a running motor as an electrical angle.

Step 1: Turn the motor from the load side, and measure the induced voltage of the motor



- Measure the fundamental wave's RMS value and the total RMS value of the induced voltage.
- Perform zero compensation for the phase between the rotation synchronization signal and the fundamental wave voltage of the induced voltage.

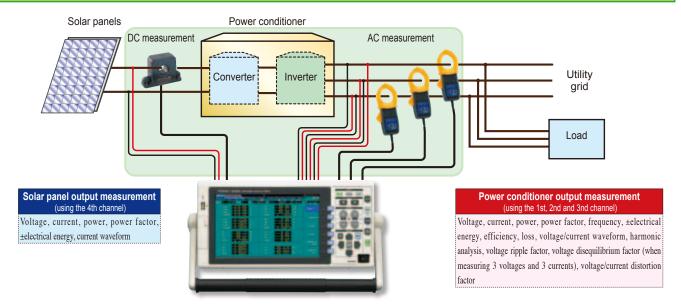
Other Advance Functionsmotor

- Frequency divider circuit (up to 1/60000 frequency dividing) helpful when the rotation synchronization signal consists of multiple pulses for one cycle of induced voltage.
- A-to-Y conversation function convert the line voltage to a phase voltage (virtual neutral reference) when three-phase three-wire (3P3W3M connection) measurements are performed.

Step 2: Measurement of a running motor

- Measure the fundamental wave component, harmonic component, and electrical angle of line voltage and current of a line to the motor. (The measured data can also be used as parameters for calculation of LplLq)
- Simultaneously measure motor efficiency, inverter efficiency, total efficiency, and inverter loss while observing the motor control.

Evaluate new energies such as solar power, wind power, and fuel cells


Assess power conditioners that are indispensable for converting new energies to electrical power

Advantages

- 1. The input and output characteristics of a power conditioner can be measured simultaneously in combination with an AC/DC current sensor
- 2. Use of a current sensor makes the connection simple. Make accurate measurements in combination with the AC/DC CURRENT SENSOR
- 3. The sale and purchase of electrical energy of a power line connected to a power conditioner can also be measured with one unit

Proprietary HIOKI Technology

- 4. Measure DC mode integration, which responds quickly to changes in the input of sunlight and the like, and RMS mode integration, which handles the separate integration of the sale and purchase of electric energy, all at the same time
- 5. Ripple factor, efficiency and loss, which are required to evaluate power conditioners for solar power generation, can be measured with one single unit.

Conditioner-specific measurement items all measurable

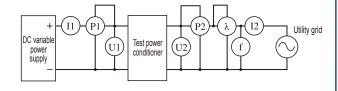
 Power conditioner measurement-specific ripple factor and disequilibrium factor can also be measured and displayed simultaneously (up to 32 items can be displayed simultaneously), resulting in enhanced test efficiency

Display item	Measurement item	
rms value	RMS (DC/AC voltage/current of input and output)	
P, Q, S, λ values	Active power, reactive power, apparent power, power factor	
Loss value	Input and output loss	
η value	Efficiency	
thd value	Distortion factor (voltage/current)	
rf value	Ripple factor (for DC)	
unb value	Disequilibrium	
f value	Output frequency	

■ Current trends in solar power generation

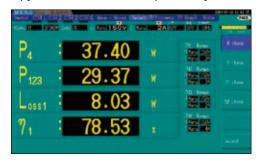
• Interconnected system of solar power generation and power conditioner Electrical energy generated from the solar power generation is DC electrical energy, so it needs to be converted to AC electrical energy to be used by connecting to the utility grid. The device to convert direct current to alternating current is the power conditioner. In particular, to sell electrical energy by connecting to the utility grid, the performance of the power conditioner is important, so the method to evaluate the performance is specified by the national standards.

IEC standard


IEC 61683:1999, Photovoltaic systems -Power conditioners- Procedure for measuring efficiency

Evaluation and measurement of power conditioners

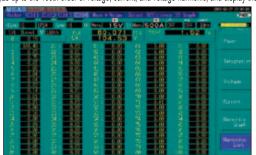
The IEC standard stipulates detailed measurement items to evaluate the input and output characteristics of power conditioners such as harmonic level, ripple factor, voltage disequilibrium factor, and voltage/current waveform.


The 3390 supports a long list of measurement items including the specific ones required.

The 3390 can measure ripple factor and evaluate and analyze through simultaneous measurements.

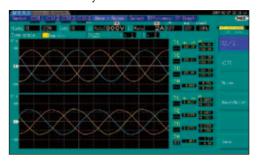
The efficiency (loss) and the amount of electrical energy sold and purchased can be displayed clearly

• Not only the amount of electricity generated with solar cells and the efficiency (loss) of a conditioner but also the amount of electrical energy sold and purchased by connecting to the utility grid can be measured simultaneously with one single unit



4 Accurately measure harmonics that are important for connecting to the utility grid

• The harmonic component and distortion factor important for connecting a power conditioner to the utility grid can be measured simultaneously.


Synchronized to the fundamental frequency of 0.5 Hz to 5 kHz.

Analyze up to the 100th order of voltage, current, and voltage harmonic, and display the current direction

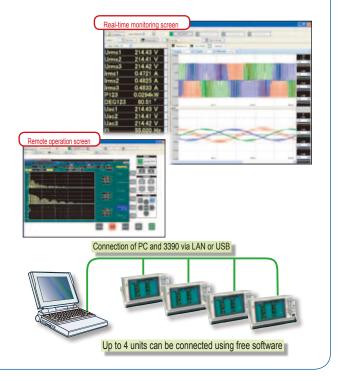
3 Check the input and output waveforms of a conditioner

• Simultaneously check the input and output waveforms of a conditioner at 500 kS/s The input and output waveforms required to evaluate power conditioners can be checked simultaneously with one unit.

5 Also measure the noise flow of a connected utility grid

• Noise measurement function (1-channel measurement: Performed simultaneously with power measurement and harmonic analysis)

Noise components at up to 100 kHz can be read while looking at the measured waveforms Frequency and voltage/current levels for the top 10 points can be displayed simultaneously.



Bundled software dedicated to the 3390 (free download from the HIOKI website)

♦ Features

- Connect the **3390** to a PC via LAN or USB for completely remote operation
- Save measured data to the PC in real time (interval saving is also available)
- Download data stored in the USB memory or CF card
- Connect up to four 3390 Power Analyzers using the free software for remote operation and simultaneous data collection

■ General s	pecifications	
Delivery media	Download from the HIOKI website	
Operating	Windows 2000, XP, Vista, 7 PC	
environment	Pentium III 500 MHz or higher CPU, 128 MB or more RAM, and LAN or USB interface	
	Java Runtime Environment (JRE) 1.5.0 or later required	
Communication	Ethernet (TCP/IP), USB 1.1/2.0	
method	For a USB connection, use the supplied dedicated driver (included with the software)	
Number of simultaneously- connected units	. 4	
■ Functions		
Remote operation function	Key operation and screen display on a PC	
Download function	Downloads data stored on the media (Files in the USB memory or CF card)	
Display function	Displays instantaneously measured values of the 3390 on the PC monitor	
, ,	Numerical display: Basic measurement items	
	Waveform display: Instantaneous waveform data	
	Bar graph: Harmonic	
	Vector: Fundamental wave vector	
Measured value	Saves the specified instantaneous value data to the PC	
save function	Selects the item to save from the numerical value display items in the display function	
Interval save function	Saves instantaneous value data to the PC at the specified interval	
CSV conversion function	Saves the displayed waveform data in CSV format to the PC	
BMP save function	Saves the displayed waveform and graph data in image format to the PC or copy images to the clipboa	
Setting function	Sends the settings of the 3390 made on a PC to the 3390	
	Setting contents can be saved and loaded to and from a file	

■3390 Specifications
(Accuracy guarantee conditions: 23°C ±3°C, 80%RH or less, warm-up time 30 minutes or more, sinusoidal wave input, power factor 1, voltage to ground 0 V, in the range where the fundamental wave meets the conditions of the synchronization source after zero adjustment)

	ditions of the synchroni	zation source a	iter zero aujustificii)
Input				
Measurement line	Single-phase two-wir	e (1P2W), sin	gle-phase three-wi	re (1P3W), three-
wieasurement inte	phase three-wire (3P3)	W2M, 3P3W3N	1), three-phase four	-wire (3P4W)
Connection setting	CH1 CH2		CH3	CH4
Pattern 1	1P2W 1P2W		1P2W	1P2W
Pattern 2	1P3W		1P2W	1P2W
Pattern 3	3P3W2N	Л	1P2W	1P2W
Pattern 4	1P3W	,1		
Pattern 5	3P3W2N	A	1P3W 1P3W	
	3P3W2N		3P3W2M	
Pattern 6	3F3 W 2N			
Pattern 7		3P3W3M		1P2W
Pattern 8		3P4W		1P2W
Number of input channels	Voltage: 4 channels U: Current: 4 channels I1			
	Voltage: Plug-in termi		inal)	
Input terminals	Current: Dedicated con	nnector		
Input method	Voltage: Isolated input Current: Isolated input			
Measurement range	(Selectable for each co	onnection, auto	range available)	
Voltage range	15.000V / 30.000V / 60.	000V / 150.00V	/ 300.00V / 600.00V	/ 1500.0V
Current range	*400.00mA / *800.00mA			
() indicates the	4.0000A / 8.0000A /20.0			
sensor rating used	1.0000A / 2.0000A / 5.0			
	10.000A / 20.000A / 50.		/ 200.00A / 500.00A (RSAL CLAMP ON CT	
Power range	Depends on combination			
Crest factor	Depends on combination of voltage and current range (6.0000 W to 2.2500 MW) 3 (voltage/current), 1.33 for 1500 V			
Input method	Voltage input part: 2 M Ω ±40 k Ω (Differential input and isolated input)			
(50/60Hz)	Current sensor input p			isolated input)
Maximum input	Voltage input part: 150			
voltage	Current sensor input p			
	Voltage input terminal 1000 V (50/60 Hz)			
Maximum rated	Measurement category III 600 V (Expected transient overvoltage 6000 V)			
voltage to ground	Measurement category			
Measurement	Voltage and current	simultaneou	s digital samplin	g and zero cross
method	synchronization calcul	ation method		
Sampling	500kHz / 16bit			
Frequency band	DC, 0.5 Hz to 150 kH	z		
Synchronization frequency range	0.5Hz to 5kHz			
	U1 to U4 / I1 to I4 / Ext (with motor analysis option, CH B: when pulse			when pulse is set) /
Synchronization	DC (50 ms, 100 ms fixed) * Selectable for each connection (Zero cross auto follow-up by digital LPF when U / 1),			
source				
Data wadata sata	Filter resistance two-stage switching (high / low), source input 30%f.s. or more when U / 1			
Data update rate	50ms			\
	OFF / 500 Hz / 5 kHz / 100 kHz (Selectable for each connection) When 500 Hz: Accuracy +0.1%f.s. specified at 60 Hz or less			
LPF	When 5 kHz: Accuracy specified at 500 Hz or less			
	When 100 kHz: Accuracy specified at 20 kHz or less (1%rdg. is added at 10k Hz to 20 kHz)			
Polarity determination	Voltage/current zero cross timing comparison method			
Polarity	Voltage (U), current (I)), active power	(P), apparent power	(S), reactive power
determination	(Q), power factor (λ), p			
Measurement	voltage ripple factor (Ufr), current ripple factor (Ifr), current integration (Ih)			
parameters	power integration (WP)	, voltage peak (U	Jpk), current peak (I	ok)

Accurate	Voltage, currency,	and active power m	easurements
Accuracy			
	Voltage (U)	Current (I)	Active power (P)
DC	±0.1%rdg.±0.1%f.s.	±0.1%rdg.±0.1%f.s.	±0.1%rdg.±0.1%f.s.
0.5Hz to 30Hz	±0.1%rdg.±0.2%f.s.	±0.1%rdg.±0.2%f.s.	±0.1%rdg.±0.2%f.s.
30Hz to 45Hz	±0.1%rdg.±0.1%f.s.	±0.1%rdg.±0.1%f.s.	±0.1%rdg.±0.1%f.s.
45Hz to 66Hz	±0.05%rdg.±0.05%f.s.	±0.05%rdg.±0.05%f.s.	±0.05%rdg.±0.05%f.s.
66Hz to 1kHz	±0.1%rdg.±0.1%f.s.	±0.1%rdg.±0.1%f.s.	±0.1%rdg.±0.1%f.s.
1kHz to 10kHz	±0.2%rdg.±0.1%f.s.	±0.2%rdg.±0.1%f.s.	±0.2%rdg.±0.1%f.s.
10kHz to 50kHz	±0.3%rdg.±0.2%f.s.	±0.3%rdg.±0.2%f.s.	±0.4%rdg.±0.3%f.s.
50kHz to 100kHz	±1.0%rdg.±0.3%f.s.	±1.0%rdg.±0.3%f.s.	±1.5%rdg.±0.5%f.s.
100kHz to 150kHz	±20%f.s.	±20%f.s.	±20%f.s.
	* Voltage and active power values * Voltage and active power values * Voltage and active power values * Voltage and active power values	wer values at 0.5 Hz to 10 Hz are refemore than 220 V at 10 Hz to 16 Hz; more than 750 V at 30 kHz to 100 k; more than (22000/f [kHz]) V at 100 k; more than (000 V are reference valuer values, add the accuracy of the ct	are reference values Hz are reference values Hz to 150 kHz are reference values tes
Accuracy	6 months (One-year accuracy is the above accuracy \times 1.5)		
guarantee period Temperature coefficient	(Post-adjustment accuracy guaranteed for 6 months) ±0.01%.f.s / °C (When DC: Add ±0.01%f.s./°C)		
Effect of common mode voltage	±0.01% f.s. or less (When applying 1000 V (50/60 Hz) between the voltage input terminal and the case)		
Effect of external magnetic field	±1.0%f.s. or less (in a magnetic field at 400 A/m, DC, and 50/60 Hz)		

Effect of power factor	$\pm 0.15\% f.s.$ or less (When power factor = 0.0 at 45 Hz to 66 Hz), add $\pm 0.45\% f.s.$ when LPF is 500 Hz
Effective measurement range	Voltage, current, and power: 1% to 110% of range
Display range	Voltage, current, and power: Range's zero suppress range setting to ±120%
Zero suppress range	Selects from OFF, 0.1%f.s., and 0.5%f.s. * When OFF is selected, a numerical value may be displayed even if zero is input
Zero adjustment	Voltage: ±10%f.s. Current: ±10%f.s. zero correction is performed for an input offset less than ±4 mV
Waveform peak measurement	Range: Within ±300% of respective voltage and current range Accuracy: Voltage and current respective display accuracy ±2%f.s.

Frequency n	neasurement
Number of measurement channels	4 channels (f1, f2, f3, f4)
Measurement source	Selects from U / I for each input channel
Measurement method	Reciprocal method + zero cross sampling value correction
Measurement range	Within synchronization frequency range between 0.5 Hz and 5 kHz
Data update rate	50 ms (Depends on the frequency when 45 Hz or less)
Accuracy	±0.05%rdg.±1dgt. (When sinusoidal waveform is 30% or more relative to the measurement range of measurement source)
Display range	0.5000Hz to 9.9999Hz / 9.900Hz to 99.999Hz / 99.00Hz to 999.99Hz / 0.9900kHz to 5.0000kHz

Integration r	neasurement
Measurement mode	RMS / DC (Selectable for each connection, DC is only available when AC/DC sensor is used for 1P2W connections) RMS: Integrates the current RMS values and active power values, only the active values are integrated for each polarity DC: Integrates the current values and instantaneous power values for each polarity
Measurement item	Current integration (Ih+, Ih-, Ih), active power integration (WP+, WP-, WP) Ih+ and Ih- are available only in DC mode, and only Ih is available in RMS mode.
Measurement method	Digital calculation from each current and active power
Measurement interval	Data update rate of 50 ms
Display resolution	999999 (6 digits + decimal point)
Measurement range	0 to ±9999.99 TAh / TWh (Integration time is within 9999 h 59 m) If any integration value or integration time exceeds the above limit, integration stops.
Integration time accuracy	±50 ppm ±1 dgt. (0°C to 40°C)
Integration accuracy	±(Accuracy of current and active power) ± integration time accuracy
Backup function	If power fails during integration, integration resumes after power is restored

cannot be performed)	easurement for another lin	ne at a different frequency		
cannot be performed)	easurement for another lin	ne at a different frequency		
		4 channels (Harmonic measurement for another line at a different frequency		
	*			
Harmonic voltage RMS value, harmonic voltage percentage, harmonic voltage phase angle, harmonic current RMS value, harmonic current percentage, harmonic current phase angle, harmonic active power, harmonic power percentage, harmonic voltage/ current phase difference, total harmonic voltage distortion factor, total harmonic current distortion factor, voltage disequilibrium factor, current disequilibrium factor				
Zero cross synchronous calculation method (All channels same window) with gap				
U1 to U4 / I1 to I4 / Ext (Motor analysis option included, CHB: when pulse is set) / DC (50 ms/100 ms)				
32-bit				
Digital filter (Variable by the synchronization frequency)				
Rectangular				
0.5 Hz to 5 kHz				
50 ms (Depends on the synchronization frequency when less than 45 Hz)				
Phase zero adjustment is possible by key / communication command (only when the synchronization source is Ext)				
Synchronization frequency range	Window wave number	Analysis order		
0.5Hz to 40Hz	1	100th order		
40Hz to 80Hz	1	100th order		
80Hz to 160Hz	2	80th order		
160Hz to 320Hz	4	40th order		
320Hz to 640Hz	8	20th order		
640Hz to 1.2kHz	16	10th order		
1.2kHz to 2.5kHz	32	5th order		
2.5kHz to 5.0kHz	64	3rd order		
	phase angle, harmonic active current phase difference, to current phase difference, to current distortion factor, volice to the current distortion factor of the current distortion factor of the current distortion frequency range to the current distortion factor frequency range to the current distortion factor frequency range to the current distortion factor frequency and frequency range to the current distortion factor frequency range freque	phase angle, harmonic active power, harmonic power p current phase difference, total harmonic voltage distriction factor, voltage disequilibrium factor, collage disequilibrium factor, co		

Accuracy	Frequency	Voltage (U) / current (I) / active power(P)
	0.5Hz to 30Hz	±0.4%rdg.±0.2%f.s.
	30Hz to 400Hz	±0.3%rdg.±0.1%f.s.
	400Hz to 1kHz	±0.4%rdg.±0.2%f.s.
	1kHz to 5kHz	±1.0%rdg.±0.5%f.s.
	5kHz to 10kHz	±2.0%rdg.±1.0%f.s.
	10kHz to 13kHz	±5.0%rdg.±1.0%f.s.
	* Not specified wh	en the synchronization frequency is 4.3 kHz or more

	Not specified when the symmonization frequency is 4.5 kHz of friore	
Noise measu	urement (FFT processing)	
Number of channels	1 channel (Selects one channel from CH1 to CH4)	
Measurement item	Voltage/current	
Calculation type	RMS spectrum	
Measurement method	500 kHz/s sampling (Decimation after digital anti-aliasing filtering)	
FFT processing word length	32-bit	
Number of FFT	1,000 points / 5,000 points / 10,000 points / 50,000 points (Linked to the	
points	waveform display record length)	
Anti-aliasing filter	Digital filter auto (Variable by the maximum analysis frequency)	
Window function	Rectangular / Hanning / flat top	
Data update rate	Within about 400 ms to 15 s depending on the number of FFT points, with gap	
Maximum analysis frequency	100kHz / 50kHz / 20kHz / 10kHz / 5kHz / 2kHz	
Frequency	0.2 Hz to 500 Hz (Determined by the number of FFT points and the	
resolution	maximum analysis frequency)	
Noise value	Calculates the levels and frequencies of voltage and current peaks	
measurement	(maximum values) for the top 10 points	

MOTOR TES	STING OPTION (Applicable to the 9791 and 9793)					
	3 channels					
Number of input	CH A: Analog DC input / frequency input (torque signal input)					
channels	CH B: Analog DC input / pulse input (rotation signal input)					
	CH Z: Pulse input (Z-phase signal input)					
Input terminal form	Isolation type BNC connector					
Input resistance (DC)	1 M Ω ±100 kΩ					
Input method	Isolated input and differential input (No isolation between CH B and CH Z)					
Measurement item	Voltage, torque, rotation, frequency, slip, motor output					
Maximum input voltage	±20 V (When analog / frequency / pulse)					
Maximum rated voltage to ground	50 V (50/60 Hz)					
Accuracy	6 months (One-year accuracy is the accuracy below x 1.5)					
guarantee period	(Post-adjustment accuracy guaranteed for 6 months)					
	put (CH A / CH B)					
Measurement range	±1 V / ±5 V / ±10 V (When analog DC input)					
Effective input range	1% to 110%f.s.					
Sampling	10 kHz / 16-bit					
Measurement	Simultaneous digital sampling and zero cross synchronization calculation					
method	method (zero cross averaging)					
Synchronization	Same as the 3390 power measurement input specification (Common for CH A					
source	and CH B)					
Accuracy	±0.1%rdg. ±0.1%f.s.					
Temperature coefficient	±0.03%f.s./°C					
Effect of common mode voltage	$\pm 0.01\% f.s.$ or less when applying 50 V (DC 50/60 Hz) between the inputerminal and the 3390 case					
Display range	Range's zero suppress range setting to ±120%					
Zero adjustment	Voltage ±10%f.s.					
2. Frequency in	put (only for CH A)					
Effective	15Vmools					
amplitude range	±5Vpeak					
Measurement range	100kHz					
Band width	1kHz to 100kHz					
Accuracy	±0.05%rdg.±3dgt.					
Display range	1.000kHz to 99.999kHz					
3. Pulse input (c	only for CH B)					
Detection level	Low: 0.5 V or less, High: 2.0 V or more					
Measurement band	1 Hz to 200 kHz (When duty ratio is 50%)					
Frequency divider setting range	1 to 60000					
Measurement	0.5 Hz to 5.0 kHz (Specified by the frequency at which the measurement					
frequency range	pulse is divided by the set frequency dividing number)					
Minimum detection width	2.5 µs or more					
Accuracy	±0.05%rdg. ±3dgt.					
4. Pulse input (c	5 5					
Detection level	Low: 0.5 V or less, High: 2.0 V or more					
Measurement band	0.1 Hz to 1 kHz					
Minimum	U.I IIL IU I KIIL					
detection width	2.5 μs or more					
Setting	OFF / ON (When ON a frequency divider circuit of CH B is cleared by a rising edge)					

D/A OUTPU	FOPTION (Applicable to the 9792 and 9793)

Number of output channels 16 channels

Output content	Switchable between Waveform output / Analog output (selects from the measurement items) * Waveform output is only for CH 1 to CH 8
Output terminal form	D-sub 25-pin connector × 1
D/A conversion resolution	16-bit (Polarity + 15-bit)
Output voltage	Analog: DC ±5 Vf.s. (Max. about DC ±12V) Waveform output: 2 Vrms f.s., crest factor: 2.5 or more
Accuracy	Analog output: Measurement accuracy ±0.2%fs.(DC level) Waveform output: Measurement accuracy ±0.5%f.s. (at RMS level, in synchronization frequency range)
Accuracy guarantee period	6 months (one-year accuracy is the above accuracy × 1.5) (Post-adjustment accuracy guaranteed for 6 months)
Output update rate	Analog output: 50 ms (As per the data update rate of the selected item) Waveform output: 500 kHz
Output resistance	100 Ω ±5 Ω
Temperature coefficient	±0.05%f.s./°C
Display	
Display character	English / Japanese / Chinese (simplified characters)
Display	9-inch TFT color LCD display (800 × 480 pixels)

Display	
Display character	English / Japanese / Chinese (simplified characters)
Display	9-inch TFT color LCD display (800 × 480 pixels)
LCD backlight	ON / Auto OFF (1min / 5min / 10min / 30mim / 60min)
Display resolution	99999 counts (Integrated value: 999999 counts)
Display refresh rate	200 ms (Independent of internal data update rate; waveform and FFT depend on the screen)
Display screen	Measurement, Setting, File Manipulation screens

Display screen	Measurement, Setting, 1 the Manipulation sercens					
External inte	arfana.					
1. USB Interface	•					
Connector	Series Mini-B receptacle					
Electrical	USB2.0 (Full Speed / High Speed)					
specification						
Number of ports	1					
Class	Vendor specific (USB488h)					
Destination	PC (Windows XP / Vista (32-bit version) / 7 (32-bit, 64-bit version))					
Function	Data transfer, remote operation, command control					
2. USB memory						
Connector	USB type A connector					
Electrical specification	USB2.0					
Power supply	Up to 500 mA					
Number of ports	1					
Applicable USB memory	USB Mass Storage Class					
Recordable items	Setting file: Save/Load Measured value/recorded data: Copy (from the CF card data) Waveform data: Save, screen hard copy					
3. LAN interface						
Connector	RJ-45 connector × 1					
Electrical specification	IEEE802.3 compliant					
Transmission method	10BASE-T / 100BASE-TX auto recognition					
Protocol	TCP/IP					
Function	HTTP server (remote operation), dedicated port (port transfer, command control)					
4. CF card inter	face					
Slot	TYPE I × 1					
Usable card	Compact flash memory card (32 MB or more)					
Applicable memory capacity	Up to 2 GB					
Data format	MS-DOS format (FAT16 / FAT32)					
Recordable	Setting file: Save / Load					
items	Measured value / automatically recorded data: Save (in CSV format)					
items	Waveform data: Save, screen hard copy					
5. RS-232C inter	rface					
Method	RS-232C, EIA RS-232D, CCITT V.24, JIS X5101 compliant					
Connector	D-sub 9-pin connector × 1					
Recordable	Full duplex asynchronous method					
items	Data length: 8, parity: none, stop bit: 1,					
itomo	Flow control: Hard flow, delimiter: CR+LF					
Baud rate	9600, 19200, 38400 bps					
6. Synchronizat	ion control interface					
Terminal form	IN-side 9-pin round connector ×1, OUT-side 8-pin round connector x 1					
Signal	5 V (CMOS level)					
Maximum allowable input	±20V					
Signal delay	Up to 2 μs (Specified by the rising edge)					

Functions 1. Setting	
Rectification switching	rms / mean (Selectable for the voltage/current of each connection) rms: Displays the true RMS value (True RMS) mean: Displays the average-value rectified RMS value
Auto range	OFF / ON (Voltage and current range is selectable for each connection)

	1 min / 5 min /		n / 30 min / 60	min	5 s / 30 s / ing (130 items/50		
	Interval time and maximum number Auto-save						
	of Items to be			ave sing a 512 MB	card)		
Data save	Interval	Number of it	ems Number of i	ems to save Max	imum period		
interval	50ms	130			oout 2 days		
		(When 200 ms: 2600			out 14 hours out 42 days		
	1s	(5 s or more: 5			out 11 hours		
	1min	5000	4	0 Abo	out 416 days		
	1111111	5000	40	00 At	oout 7 days		
		OFF / Timer / Actual time When using Timer: 10 s to 9999 h 59 m 59 s (unit: 1 s)					
Time control		mer: 10 s to 999 ctual Time: Star)		
Scaling	VT ratio: OFF	/ 0.01 to 9999.9	99		,		
Averaging		/ 0.01 to 9999.9		usly measured	values including		
Averaging	harmonic value			-	values including		
		peak value, inte a applies to all d			ıring averaging		
Method		eraging (Applie					
Response time		ST) / 1.0s (MII			000 (10000)		
Efficiency/loss			<u> </u>	1 0	0%f.s. to 100%f.s.) power for each		
calculation	connection and	l channel.					
Calculated item		alue (P) for each n) when the 9791			n is included		
Calculation rate	Calculates and	updates at a da	ta update rate o	f 50 ms			
		data of calcul nose synchroniz			ation between		
Calculable factors		e efficiency and					
Calculation algorithm	Calculated iten	n is specified fo	r Pin and Pout i	-	elow		
		/ Pin , Loss=		voltage wave	form using the		
Δ – Y calculation	virtual neutral	point for 3P3W	3M connection	_			
A 1 calculation	Uses a phase vor voltage RMS		ate all voltage p	parameters inc	luding harmonic		
Display hold		ys all displayed m	neasured values as	nd display updat	e of waveforms		
Data update	Updates data when the hold key is manipulated, when the interval is						
Output data	reached, and when an external synchronization signal is detected D/A output, CF data save: Outputs the hold data (The waveform output continues,						
	and the interval auto-save outputs data immediately before it is updated)						
Peak hold	Displays and updates the maximum value for each of all measured data (without waveform display and integrated value)						
	(While averaging	ng is performed,	the maximum v		to the measured		
Data undate	value after avera Data is cleared				e Hold function)		
	reached, and w	vhen an externa	al synchronizati	on signal is d	etected (Data is		
Output data		nternal data upo lata save: Outputs					
					ive outputs data		
2 Display	immediately be	efore it is cleare	d)				
2. Display Connection	Displays the co	onnection diagra	am and the volta	age/current ve	ctor diagram		
check screen	* The right connect	tion range is display	ed in the vector diag	ram, so the connec	ction can be checked.		
Connection display screen		ured power and lisplayed for each					
DMM screen	Basic Measu	rement screen	, Voltage Me	asurement s	creen, Current		
Harmonio coroca		en, List screen, V		een			
Harmonic screen				surement item	s from all basic		
Select/Display screen	measurement is	tems					
Efficiency/Loss	Display pattern: 4 items, 8 items, 16 items, or 32 items (4 pattern switching) Displays the numerical values of efficient and loss set in the calculation algorithm						
screen	Display pattern:	3 efficiency item	ns, 3 loss items.				
Waveform & Noise Measurement screen					ompressed screen result when noise		
	measurement is p	performed					
Trigger Record Length		on timing of har					
Compression Ratio		/10, 1/25, 1/50 (ge/current channels		
Recording time	Recording speed /				E0 000 ==:=:		
	Recording length	1,000 points	5,000 points	10,000 points	ļ · · ·		
	500kS/s 250kS/s	2ms 4ms	10ms 20ms	20ms 40ms	100ms 200ms		
	100kS/s	10ms	50ms	40ms 100ms	500ms		
	50kS/s	20ms	100ms	200ms	1000ms		
	25kS/s	40ms	200ms	400ms	2000ms		
	10kS/s	100ms	500ms	1000ms	5000ms		
	Selects items on the horizontal and vertical axes from the basic measurement items and displays them in the X-Y graph						
X-Y Plot screen				ioni die basie n	icasurement items		
	and displays ther *The graph is dray	n in the X-Y grap vn at the data upda	oh te rate, data is not r		ving data is cleared		
X-Y Plot screen Option	and displays ther *The graph is drav Horizontal axis	n in the X-Y grap	oh te rate, data is not r gauge display)				

Motor screen	Displays the measured values of the MOTOR TESTING OPTION 9791 (9793). Display pattern: Displays the numerical values of 4 items			
3. Data save				
Auto data save	Saves each measured value to the CF card at each interval			
Save destination	folder can be specified			
Save itemAuto	and peak value of the noise measurement function			
	CSV file format			
	Saves each measured value to each save destination when the SAVE key is pressed			
	USB memory / CF card, the save destination folder can be specified Any item can be selected from all measured data, including harmonic value			
ouro nomouro	and peak value of the noise measurement function			
Data format	CSV file format			
Screen hard copy	Saves the display screen to the save destination when the COPY key is pressed			
Save destination	USB memory / CF card * The save destination folder can be specified when USB memory or CF card is specified.			
Data format				
Setting data save	Setting information can be saved and loaded to and from the save			
	destination as a setting file			
Save destination	(With the exception of language setting and communication setting) USB memory / CF card (the save destination folder can be specified)			
	nected equipment			
Synchronized	The 3390 master and 3390 slaves can be connected with synchronization			
measurement	cables to perform synchronized measurements			
	* If the interval setting is identical, synchronized measurements can be			
Synchronized item	saved automatically Clock, data update rate (excl. noise measurement), integration start/stop,			
Cyncinonized item	data reset, event			
Event item	Hold, manual save, screen copy			
Synchronization timing				
O	master by the key or via communication)			
Synchronization delay 5. System	Up to 5 μs per connection, up to +50 ms per event			
Display language	English / Japanese / Chinese			
Clock function	Auto Calendar, Auto Leap Year Adjustment, 24 Hour Meter			
Clock setting	Year, Month, Day, Hour, Minute Setting, Zero Second Adjustment			
Real time accuracy	Within ±3 s / day (25°C)			
Beep tone	OFF / ON			
Screen color Start screen select	COLOR1 / COLOR2 / COLOR3 / COLOR4 / MONO Connection screen / screen closed in the previous session (Measurement screen only)			
LCD backlight	ON / 1min / 5min / 10min / 30min / 60min			
Sensor recognition	Automatically recognizes the current sensor connected			
Alarm display	Voltage/current peak over threshold detection, synchronization source non-			
IZ . I I	detection (Alarm mark on)			
Key lock	ESC key: ON/OFF by holding down the key for 3 seconds (Key lock mark on) Sets the equipment to the default (factory) settings (Communication settings			
System reset	are not changed)			
File manipulation	5 7			
	7 12			
General spe	cifications			
Operating location				
Storage temperature and humidity ranges	-10°C to 50°C, 80%RH or less (No dew condensation)			
Operating temperature and humidity ranges	0°C to 40°C, 80%RH or less (No dew condensation)			
	For 1 minutes at 50/60 Hz AC5.312 kVrms: Between the voltage input terminal and the unit case			
	AC3.32 kVrms: Between the voltage input terminal and the current input			
Withstand voltage	terminal / interface			
	AC370 Vrms: Between the 9791 and 9793 input terminals (CH A, CH B, CH Z) and the unit case			
	Between CH A and CH B / CH Z			
Applicable standard	Safety: EN61010			
Applicable standard	EMC: EN61326, EN61000-3-2, EN61000-3-3			
Rated power supply voltage	100 to 240 VAC (expected transient overvoltage of 2500 V), 50/60 Hz			
Maximum rated power	140VA			
Dimensions	340 W × 170 H ×157 D mm (13.39" W × 6.69" H × 6.18" D)			
	(excluding protrusions)			
Weight	4.8 kg (169.3 oz.) (including the 9793)			
Weight Backup battery life	About 10 years (a reference value of a lithium ion battery used at 23°C to			
	About 10 years (a reference value of a lithium ion battery used at 23°C to back up the clock, setting conditions, and integrated values)			

Basic calc	ulation alg	orithms				
Connection	1P2W	1P3W	3P3W2M	3P3W3M	3P4W	
Voltage and current RMS value (True RMS value)	$\frac{Xrms(i) =}{\sqrt{\frac{1}{M} \sum_{s=0}^{M-1} (X_{(i)s})^2}}$	$\frac{1}{2} \left(Xrms_{(i)} - \frac{1}{2} \right)$		$Xrms123 = \frac{1}{3}(Xrms_1 + Xrms_2 + Xrms_3)$		
Voltage and current average rectified RMS indication value	\	$\frac{1}{2} \left(Xmn_{(i)} - \frac{1}{2} \right)$		$Xmn123 = \frac{1}{3}(Xmn_1 + Xmn_2 + Xmn_3)$		
Voltage and current alternating-current component		Xac(i) =	$\sqrt{\left(Xrms_{(i)}\right)^2}$ –	$(Xdc_{(i)})^2$		
Voltage and current mean value		$Xdc(i) = \frac{1}{1}$	$\frac{1}{M} \sum_{s=0}^{M-1} X_{(i)s}$			
Voltage and current fundamental wave component	Fundamental wave value X1(i) based on the harmonic calculation result					
Voltage and current peak value	Maximum value among X pk+(i) = X (i)s M Minimum value among X pk-(i) = X (i)s M					
Active power	$\begin{split} P(i) &= \\ \frac{1}{M} \sum_{s=0}^{M-1} \bigl(U_{(i)s} \times I_{(i)s} \bigr) \end{split}$	P ₁₂ =P ₁ +P ₂ P ₃₄ =P ₃ +P ₄		P123 =P1+P2+P3		
,	- In the cases of 3P3W3M and 3P4W connections, phase voltage is used for the voltage waveform U (i)s. (3P3W3M. U1s = (U1s-U3s) ² , U2s = (U2s-U1s) ² , U3s = (U3s-U2s) ²) The polarity synthosi of active power findicate the power direction when power is consumed (+P) and when power is regenerated (-P).					
Apparent power	S(i) =U(i)5I(i)	S12=S1+S2 S34=S3+S4	$S_{12} = \frac{\sqrt{3}}{2} (S_1 + S_2)$ $S_{34} = \frac{\sqrt{3}}{2} (S_3 + S_4)$	S123 =S	1+S2+S3	
	Selects rms or mn for U(i) and I(i) In the cases of 3P3W3M and 3P4W connections, phase voltage is used for the voltage U (i)					
	$Q(i) = \frac{1}{si_{(i)}\sqrt{S_{(i)}^2 - P_{(i)}^2}}$	Q12 =Q1+Q2 Q34 =Q3+Q2		Q123 =Q1+Q2+Q3		
Reactive power	The polarity symbol si of reactive power Q indicates symbol [none]: lag and symbol [-]: lead. The polarity symbol si(i) is determined by lag or lead of voltage waveform U (i)s and current waveform I (i)s for each measurement channel (i), and in the cases of 3P3W3M and 3P4W connections, phase voltage is used for the voltage waveform U (i)s.					
Power factor	$ \lambda(i) = \frac{si_{(i)} \left \frac{P_{(i)}}{S_{(i)}} \right }{s_{(i)}} $		$I_{34} = si_{34} \frac{P_{34}}{S_{34}}$	I ₁₂₃ = si	$\frac{P_{123}}{S_{123}}$	
	The polarity symbol s	i(i) is determined by lea	es symbol [none]: lag and d or lag of voltage waves 3 are determined by the s	form U (i)s and current		

Connection Item	1P2W	1P3W	3P3W2M	3P3W3M	3P4W	
Phase angle	$ \begin{aligned} \phi(i) &= \\ \sin(\cos^{-1} I_{(i)} \end{aligned} $					
	The polarity symbol si(i) is determined by lead or lag of voltage waveform U (i)s and current waveform I (i)s for each measurement channel. si12, si24, and si123 are determined by the symbol of Q12, Q34, and Q123, respectively.					
(i): Measurement channel, M: Number of samples between synchronization timings, s: Sample point number						

$ \begin{array}{ c c c c } \hline \textbf{Item} & \textbf{Setting unit} & \textbf{Calculation algorithm} \\ \hline & V (DV \ voltage) & \frac{1}{M} \sum_{s=0}^{M-1} A_s \\ \hline & N^* \ m \ / \ mN^* \ m \ / \ kN^* \ m \\ \hline & & common (torque) & \hline & When \ analog \ DC & A \ [V] \times chA \ scaling \ setpon \\ \hline & When \ nalog \ DC & Measurement \ frequency - fc \ setpon \ torque \ setpoint / fd \ setpoint \\ \hline & M: \ Number \ of \ samples \ between \ synchronization \ timings, \ s: \ Sample \ point \\ \hline & V (DC \ voltage) & \frac{1}{M} \sum_{s=0}^{M-1} B_s \\ \hline & When \ analog \ DC & B \ [V] \times chB \ scaling \ setpon \ pole \ number \ setpoint \ x \ pulse \ frequency \\ \hline & When \ pulse \ input \\ \hline & r/min \ (rotation) & When \ analog \ DC & \ [B \ [V] \times chB \ scaling \ setpon \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pole \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ frequency \ pulse \ number \ setpoint \ x \ pulse \ puls$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Calculation algorithm			
	nt			
	it) × rated			
	number			
chB Hz (frequency) When pulse input Pole number setpoint x pulse freque pulse number setpoint When analog DC B[V] × chB scaling setpoint				
When pulse input pulse number setpoint When analog DC B[V] × chB scaling setpoint T/min (rotation)	nt			
r/min (rotation)	ncy / 2 ×			
r/min (rotation) When pulse input $2 \times 60 \times \text{frequency [Hz]} / \text{pole num}$	nt			
	per setpoint			
N• m (unit of chA) (Indicated value of chA) $\times 2 \times \pi \times$ (indicated value of	f chB) / 60			
mN• m (unit of chA) (Indicated value of chA) $\times 2 \times \pi \times$ (indicated value of chB) / 60 / 1000			
Pm kN• m (unit of chA) (Indicated value of chA) $\times 2 \times \pi \times$ (indicated value of chB)	(Indicated value of chA) $\times 2 \times \pi \times$ (indicated value of chB) $\times 1000 / 60$			
Calculation cannot be performed when the unit of chA is other than the above of chB is other than r/min.	or the unit			
Hz (unit of chB) 100 × input frequency – indicated value of chB / inpu	t frequency			
Slip r/min (unit of chB) $100 \times 2 \times 60 \times \text{input frequency} - \text{indicated value of number setpoint } / 2 \times \pi \times \text{input frequency}$	$100 \times 2 \times 60 \times \text{input frequency} - \text{indicated value of chB} \times \text{pole}$			
Selects the input frequency from f1 to f4	Selects the input frequency from f1 to f4			

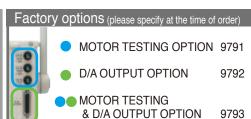
■ Current sensors specifications

Model	9272-10	CT6841	CT6843	9279-01
Rated current	AC 20A/200A	AC/DC 20A	AC/DC 200A	AC/DC 500A
Maximum continuous input range	50A/300A rms	40A rms	400A rms	650A rms
Accuracy (45 to 66 Hz, DC: DC compatible sensor)	±0.3%rdg.±0.01%f.s., ±0.2°	±0.3%rdg.±0.01%f.s. , ±0.1°		±0.5%rdg.±0.05%f.s. , ±0.2° (30 minutes after power is turned on and after magnetization)
Frequency characteristic	1Hz to 5Hz: ±2%rdg.±0.1%f.s. 1kHz to 5kHz: ±1%rdg.±0.05%f.s. 10kHz to 50kHz: ±5%rdg.±0.1%f.s.	DC to 500Hz: ±0.3%max. 500Hz To 10kHz: ±1.5%max. 10kHz to 100kHz: ±5.0%max.	DC to 500Hz: ±0.3%max. 500 to 10kHz: ±1.5%max. 10kHz to 50kHz: ±5.0%max.	DC to 1kHz: ±1.0% (±0.5°) 1 k to 10 kHz: ±2.5 % (±2.5°) 10 k to 20 kHz: ±5.0 % (±5.0°)
Effect of Notel conductor position	$\pm 0.2\%$ rdg. or less (at 100A/55Hz input, using with the wire 10mm diameter)	Within ±0.1%rdg. (deviation from center)		±1.5%rdg. or less (DC,55Hz)
Effect of external electromagnetic field	100mA or less (in an AC electromagnetic field of 400 A/m, 60Hz)	50mA equivalent or less (400A/m, 60Hz)		Max. 2A (400 A/m, 55Hz and DC)
Operating temperature and humidity	0°C to 50°C (-32°F to 122°F) 80%RH or less (No condensation)	-40°C to 85°C (-40°F to 185°F) 80%RH or less (No condensation)		0°C to 40°C (-32°F to 104°F) 80%RH or less (No condensation)
Measurable conductor diameter	φ 46mm (1.81")	φ 20mm (0.79")		φ 40mm (1.57")
Dimensions, mass	78W×188H×35Dmm(3.07"W×7.40"H×1.38"D), 430g(15.2 oz.)	153W(6.02")×67H(2.64")×25.5D(0	0.98")mm, 370g(12.3 oz.)	220W×103H×43.5Dmm(8.66"W×4.06"H×1.71"D), 470g(16.6 oz.)

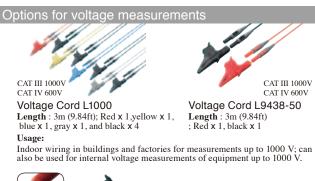
Model	CT6862	CT6863	9709	CT6865
Rated current	AC/DC 50A	AC/DC 200A	AC/DC 500A	AC/DC 1000A
Maximum continuous input range	100A rms	400Arms	700A rms	1200A rms
Accuracy (45 to 66 Hz, DC: DC compatible sensor)	$\pm 0.05~\% rdg. \pm 0.01~\%~f.s.~, \pm 0.2^{\circ}$ (Right after power is turned on at DC and 16Hz to 400Hz)		± 0.05 %rdg. ± 0.01 % f.s. , $\pm 0.2^\circ$ (10 minutes after power is turned on)	±0.05 %rdg.±0.01 % f.s. , ±0.2°
Frequency characteristic	DC to 16 Hz: ±0.1%rdg.±0.02%f.s.(±0.3°) 5kHz to 10kHz: ±1%rdg.±0.02%f.s. (±1.0°)		DC to 45Hz: ±0.2%rdg.±0.02%f.s.(±0.3°) 5kHz to 10kHz: ±2%rdg.±0.1%f.s. (±2.0°)	DC to 16Hz: ±0.1%rdg.±0.02%f.s.(±0.3°) 500Hz to 10kHz: ±5%rdg.±0.05%f.s.
	$500kHz$ to 1M Hz: $\pm 30\% rdg. \pm 0.05\% f.s.$ Note2	300kHz to 500k Hz: ±30%rdg.±0.05%f.s. Note2	20kHz to 100kHz: ±30%rdg.±0.1%f.s. (±30°)	10kHz to 20kHz: ±30%rdg.±0.1%f.s.
Effect to conductor position	±0.01%rdg. or less (50A input, DC to	±0.01%rdg. or less (100A input, DC to	±0.05%rdg. or less (at 100ADC input,	±0.05%rdg. or less (1000A input, 50/60Hz,
	100Hz, using with the wire 5mm diameter)	100Hz, using with the wire 10mm diameter)	using with the wire 10mm diameter)	using with the wire 20mm diameter)
Effect of external electromagnetic field	10mA or less	50mA or less	50mA or less	200mA or less
	Scaled value, in a DC or 60Hz magnetic field of 400 A/m			
Operating temperature and humidity	CT6862/CT6863/CT6865: -30°C to 85°C (-22°F to 185°F), 9709: 0°C to 50°C (-32°F to 122°F)			
	80%RH or less (No condensation)			
Measurable conductor diameter	φ 24mm (0.94")	φ 24mm (0.94")	φ 36mm (1.42")	φ 36mm(1.42")
Dimensions, mass	70W×100H×53Dmm (2.76"W×3.94"H×2.09"D), CT6862: 340g(12.0 oz.), CT6863: 350g(12.3oz.)		160W×112H×50Dmm (6.30"W×4.41"H×1.97"D), 9709: 850g(30.0oz.) CT9895: 1000g(35.3oz)	

Note1 : Includes derating characteristics Note2: No phase precision regulations

POWER ANALYZER



Order Code: 3390


Accessories: Instruction Manual × 1, Measurement Guide × 1, Power cord × 1, USB cable × 1, D-sub connector × 1 (when 9792 or 9793 is installed), Color label × 2

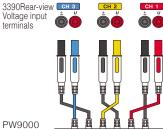
Ordering Information

Please purchase separately-sold voltage cord and current sensor for measurements A HIOKI-issued PC card is also necessary in order to save measured data. Factory options cannot be installed after delivery.

Grabber Clip 9243

Usage:

Attaches to the end of the Voltage Cord L1000 or L9438-50.



WIRING ADAPTER PW9000 For 3P3W WIRING

WIRING ADAPTER PW9001 For 3P4W WIRING

Reduce voltage cords for easy wiring.

PW9001 connection example When used with Model L1000

Note:

Dedicated PC application software and communication command manual are available for the 3390. Please download them from the HIOKI website.

CH 1

Rack mounts available on special order. Please contact your local HIOKI office

When using the 3390 with a DC power supply as in the case of on-vehicle measurements, a separate DC-AC converter is required.

Required DC-AC converter output specification Sinusoid wave type, 50/60 Hz (60 Hz recommended) Output capacity: The maximum power consumption of the 3390 is 140VA. Select a rating more than the capacity.

Options for current measurements AC/DC CURRENT SENSOR CAT III 1000V CAT III 1000V CAT III 1000V CAT III 1000V CT6862 (AC/DC 50A) 9709 (AC/DC 500A) (AC/DC 200A) (AC/DC 1000A) ■ CLAMP ON SENSOR ■ AC/DC CURRENT PROBE UNIVERSAL CLAMP ON CT CAT III 600V CE-marked 600 V insulated conductor 9272-10 (AC20/200A) CT6841 (AC/DC 20A) CT6843 (AC/DC 200A) 9279-01

9729

Use only PC Cards sold by HIOKI. Compatibility and performance are not guaranteed for PC cards made by other manufacturers. You may be unable to read from or save data to such cards.

PC Card 512M 9728 (Capacity: 512 MB) 9729 (Capacity: 1 GB) PC Card 1G PC Card 2G 9830 (Capacity: 2 GB)

CARRYING CASE 9794 Hard case dedicated to the 3390

(AC/DC 500A)

448 W × 618 H ×295 D mm (17.64" W × 24.33" H × 11.61" D) (excluding protrusions)

CONNECTION CORD L9217 **Length**: 1.6 m (5.25 ft) length **Usage**: For input of the 9791 and

CONNECTION CABLE 9683 **Length**: 1.5 m (4.92 ft) Usage: For synchronized

LAN CABLE 9642 Length: 5 m (16.41 ft) supplied with straight to cross conversion cable

Combination example

VOLTAGE CODE L9438-50 × 3

2. Inverter input and output evaluation and measurements (Three-phase there-wire (3P3W2M) two-circuit)

500A SENSOF

9709 × 4

ANALYZER 3390 × 1 3. Motor evaluation and measurements

(DC input / three-phase motor evaluation (DC, 3P3W3M measurements))

 9709×4

MOTOR TESTING & D/A OUTPUT OPTION 9793 × 1

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies

HIOKI E.E. CORPORATION

HEADQUARTERS

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 http://www.hioki.com/ E-mail: os-com@hioki.co.jp

TEL +91-124-6590210 E-mail: hioki@hioki.in

HIOKI SINGAPORE PTE. LTD. TEL +65-6634-7677 FAX +65-6634-7477 E-mail: info-sg@hioki.com.sg

HIOKI USA CORPORATION
TEL +1-609-409-9109 FAX +1-609-409-9108
http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com

HIOKI INDIA PRIVATE LIMITED

HIOKI KOREA CO., LTD.

TEL +82-2-2183-8847 FAX +82-2-2183-3360 E-mail: info-kr@hioki.co.jp

HIOKI (Shanghai) SALES & TRADING CO., LTD. TEL +86-21-63910090 FAX +86-21-63910360

http://www.hioki.cn / E-mail: info@hioki.com.cn